Pt-Co Alloys-Loaded Cubic SiC Electrode with Improved Photoelectrocatalysis Property

نویسندگان

  • Dan Liu
  • Tao Yang
  • Junhong Chen
  • Kuo-Chih Chou
  • Xinmei Hou
چکیده

A novel composite photocatalyst was synthesized by loading 5 wt % of platinum cobalt alloy on 3C-SiC nanowires and powder (Pt-Co-SiC) respectively via a simple polyol reduction method. Pt-Co-SiC were comprehensively characterized by SEM, HRTEM, XRD, PL, and XPS. The results indicated that Pt-Co nanoparticles in the size of 2-5 nm were dispersed homogeneously in the SiC nanowires and powders. The photocurrent response of the Pt-Co-SiC increased remarkably with increasing Pt content and the best performance was observed with the sample of Pt₃Co-SiC. Especially, the Pt₃Co-SiC nanowires photoelectrode exhibited improved cathodic current density (0.14 mA·cm-2) under the simulated sunlight, which was about 10 times higher than the Pt₃Co-SiC powders. The H₂ production rate for the Pt₃Co-SiC nanowires is 30 times more than that of the pure SiC nanowires. The enhancement of the Pt-Co-SiC properties could be ascribed to the fact that more visible light was harvested and the photogenerated electron and the interfacial electron transfered more easily.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ethanol electrooxidation on the Co@Pt core-shell nanoparticles modified carbon-ceramic electrode in acidic and alkaline media

In this study, the electrocatalytic activity of the Co@Pt core-shell nanoparticles toward the ethanol oxidation reaction has been investigated by cyclic voltammetry and chronoamperometry in acidic and alkaline media in details. The physicochemical data obtained in alkaline solution are compared to those in acidic solution. The obtained results demonstrate that while in the both media Co@Pt core...

متن کامل

Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction

Crystal phase regulations may endow materials with enhanced or new functionalities. However, syntheses of noble metal-based allomorphic nanomaterials are extremely difficult, and only a few successful examples have been found. Herein, we report the discovery of hexagonal close-packed Pt-Ni alloy, despite the fact that Pt-Ni alloys are typically crystallized in face-centred cubic structures. The...

متن کامل

Operating temperature windows for fusion reactor structural materials

A critical analysis is presented of the operating temperature windows for nine candidate fusion reactor structural materials: four reduced-activation structural materials (oxide-dispersion-strengthened and ferritic/martensitic steels containing 8–12%Cr, V–4Cr–4Ti, and SiC/SiC composites), copper-base alloys (CuNiBe), tantalum-base alloys (e.g. Ta–8W–2Hf), niobium alloys (Nb–1Zr), and molybdenum...

متن کامل

Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions.

The electrocatalytic properties for electro-oxidation reactions of shape-controlled Pt-based catalysts have been improved by alloying with 2nd elements. In this study, we demonstrate cubic PtPd alloy nanoparticles synthesized using a thermal decomposition method. The cubic PtPd nanoparticles exhibit a homogeneous distribution of alloy nanostructures in the presence of Pt and Pd metallic phases....

متن کامل

Quantum dot-sensitized solar cells having 3D-TiO2 flower-like structures on the surface of titania nanorods with CuS counter electrode

The photovoltaic performance of a quantum dot (QD)-sensitized solar cell consisting of CdS/CdSe/ZnS QDs loaded onto the surface of the three-dimensional (3D) flower-like TiO2 structure grown on an array (1D) of TiO2 nanorods (FTiR) is studied. The flower-like structure on the rod-shaped titania was synthesized using a double-step hydrothermal process. The FTiR array exhibited a 3D/1D composite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017